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ABSTRACT

This study investigates the relationship between socioeconomic factors, race, and water quality in
California, a state known for its water scarcity and droughts. Based on previous studies, there seems to be
conflicting conclusions regarding how influential socioeconomic status and race affects water quality. Our
investigation aims to clarify this relationship by analyzing the recent datasets encompassing water quality
metrics, income levels, county demographics, and education levels. We hypothesize water quality will be
affected by income levels, education levels. We are also curious to find out if there is a correlation
between water quality and race.

We utilized data from various sources, which included sources such as the Drinking Water -
SAFER Dashboard, ACS DEMOGRAPHIC AND HOUSING ESTIMATES - U.S. Census Bureau,
Income Table For California - U.S. Census Bureau, Education Table For California - U.S. Census Bureau,
and Zip to ZCTA - Github users. Through various statistical methods, including linear regression, logistic
regression, ANOVA and Kruskal-Wallis Test, we tested our hypothesis.

We found that columns attributed to education, income, and race can act as determining factors of
water quality. This means we have concluded that socioeconomic factors affect water quality, but we are
unsure of which groups affect water quality in a positive or negative way.

1. INTRODUCTION

1.1 Background Research

A sustainable and clean source of water is not only a necessity, but a fundamental human right for
all citizens. Water is vital in a health and environment sense, but becomes a matter of social justice when
there is not an equitable distribution of clean water for those of different socioeconomic status, ethnic
background, and geographical areas.

In the research article, "Socioeconomic factors and water quality in California,"! Y. H. Farzin
and Kelly Grogan explored the key factors affecting California's water quality. They worked with data
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from 1993-2006 that includes water quality and socioeconomic data. They used three classes of models,
the Environmental Kuznets Curve (EKC), a more inclusive model containing socioeconomic variables,
and a model that included socioeconomic variables and spatial correlation. Note EKC states that as
income increases then environmental quality declines, but after a certain per capita income level, quality
begins to and continues to improve as income increases. They investigated whether purely economic
factors affect water quality or California agriculture, race, and education. They found the per capita
income was not a significant factor in explaining variability in water quality, but agriculture and industrial
activities did.

In the research article, "Disparities in drinking water quality evidence,"# Sarah Acquah and
Maura Allaire address disparities between water qualities based on income and race. Their goal was to
create more empirical evidence for California's government in an effort to improve the drinking water
quality for those in disadvantaged communities. They worked with data from 2000 to 2018 that included
Community Water Systems (CWSs) in California, EPA's Safe Drinking Water Information Systems, and
the United States census. They used Probit regression models to examine the likelihood of violations as a
function of the demographics of the CWS service area. They found low-income communities and
minority groups (like hispanics) are more likely to face health-related water quality violations.

Our study aims to clear up these contradicting findings by finding if income, education, and race
affect water quality in different parts of California. The tests we chose to use do not tell us if specific
income levels, education levels, or races affect the water quality in a positive or negative way, but we
encourage others to explore our research to find out.

1.2 Hypothesis

In this paper we want to see if socioeconomic factors affect water quality in California. In
research articles we found, like the ones provided above, we found contradicting results. These
differences probably come from the differences in models and data. We noticed the times looked at also
differed between the two research papers. We want to conduct hypothesis tests to illuminate the
connections between socioeconomic factors, demographic attributes, and water quality today. We hope by
analyzing datasets detailing water quality metrics across California, demographic insights from the U.S.
Census and mapping resources can uncover statistically significant correlations between economic status,
racial demographics, education levels, and various parameters of water quality. We hypothesize water
quality will be affected by income levels and education levels. We are also curious to discover if there is a
correlation between water quality and race.

1.3 Our data

Our first dataset is called Drinking Water - SAFER Dashboard Failing and At-Risk Drinking

Water Systems.! The number of observations inside of this dataset is 3232 and the number of variables is
138. This dataset contains information on the water system, the location, and water information (E-coli,
accessibility, violations, concerns, drought, groundwater, median household income, socioeconomic
burden, and deficiencies). Our second dataset is called DPO5S|ACS DEMOGRAPHIC AND HOUSING
ESTIMATES.* The number of observations inside of this dataset is 33120 and the number of variables is
138. This dataset contains information on sex, age, and race with total populations, margin of error, and
estimates. Our third dataset is called zip_to_zcta.>! The number of observations inside of this dataset is
41131 and the number of variables is 3. This dataset contains a mapping from zip codes to ZCTAs. Our
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fourth dataset is called California Income Table.! The number of observations inside of this dataset is 60
and the number of variables is 4. This dataset contains county, the Federal Information Processing
Standards (FIPS), percentages, number of people with at least a Bachelor's Degree, and rank within the
United States. Our fifth dataset is called California Education Table.”! The number of observations inside
of this dataset is 60 and the number of variables is 5. This dataset contains county, the Federal
Information Processing Standards (FIPS), median household income in US dollars, and rank within the
United States.

2. MATERIALS AND METHODS

2.1 Exploratory Data Analysis

To better understand our data we performed exploratory data analysis on different aspects of our dataset.
We focused on the number of water systems, median income per county, education level per county, water
quality scores, and groups of races.

Fig. 1 The number of water systems per county in California.
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Pictured in Figure 1 is a choropleth map that illustrates the number of water systems per county inside of
California. Inside of Tableau we were able to use the geographical location of the county then grouped the
distinct number of water systems. From Figure 1 we found that some counties have many more water
systems than others. This caused us to become more cautious when making assumptions about a single
county based on the number of water systems.
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Fig. 2 The median income in dollars per county in California.
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was dropped during the merging process. San Fransisco County is missing because it did not have a row of water quality with 0.01 or
higher

Pictured in Figure 2 is a choropleth map that illustrates the median income in dollars per county inside of
California. Inside of Tableau we were able to use the geographical location of the county then display the
median income in dollars. We made two separate maps to better display the data. We learned there is a
large variety of incomes inside of California.

Fig. 3 The number of people with a minimum of bachelor’s degrees per county in California.
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Note: Los Angeles County was excluded because it is an extreme outlier. There are 2,356,572 people with at least a Bachelor's Degree.
Note: We are missing two counties from our dataset. Modoc County is missing because it did not have a zipcode within our dataset and
was dropped during the merging process. San Fransisco County is missing because it did not have a row of water quality with 0.01 or
higher.

Pictured in Figure 3 is a choropleth map that illustrates the number of people with a minimum of a
bachelor’s degree per county inside of California. Inside of Tableau we were able to use the geographical
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location of the county then display the number of people. We made three separate maps to better display
the data. We omitted Los Angeles County which had an outlier of 2,356,572 people with a minimum of a
bachelor’s degree. We learned there is a wide range of people with at least a bachelor's degree. It appears
there are more counties with 100,000 people with bachelor’s degrees or lower.

Fig 4. Density plots for water quality scores low, medium, and high.
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Pictured in Figure 4 are three density plots. The risk level is determined by the unweighted water quality
category score. There is one for low risk levels, which is 0.01 to 0.44, medium risk levels, which is 0.45
to 0.59, and high risk levels, which is 0.6 or above. The density plot shows us the overall shape of the
distribution of water quality scores at different risk levels. We can see the shape for low risk levels and
high risk levels are skewed to the right. We see the shape for medium risk levels appears almost normal,
but has another, smaller peak around 0.58. This tells us that if there is a low or high risk level it is more
likely to be on the lower side of its range. For medium risk level it is more likely to be in the middle of its
range.
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Fig 5. The average water quality score by county.
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Pictured in Figure 5, this choropleth map illustrates the average water quality score in each county
starting from the lowest echelon of 0.13 to 0.72. Inside Tableau we were able to use the geographical
location of the county then display then the average water quality score. The southern counties of

california seem to have much better water quality on average than that of the counties of central/northern
California.

Fig 6. Scatter plots of race group proportions and their associated water quality scores.
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Pictured in Figure 6, are scatterplots that showcase the correlations between the proportion of
race groups within a county and the water quality score of that county. From these visuals generated by
Tableau, it is very hard to make out an obvious trend. After calculating Pearson's correlation score for all
groupings, we got the following: 0.1, -0.03, -0.18, -0.01, and 0.02. These correlation scores, all nearing
the neutral score of 0, all indicate a very weak relationship between the race groups and the water quality.
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2.2 Linear Regression

We wanted to use linear regression with forward selection, which iteratively adds the predictors
that improve the model based on Bayesian Information Criterion (BIC) and backward selection, which
iteratively removes the predictors that contribute least to the model according to BIC. We performing
linear regression on all of our variables, county (for geographical location), education value percent, the
number of people who at least have a bachelor's degree in the county, and the United States rank for the
education for the county (for education), median income dollars and the United States rank for the income
for the county (for income), and total populations for different races per county (for races) to predict
water quality scores.

To perform linear regression the relationship between our independent variables and our
dependent variables should be linear. The observations should be independent from each other. The
residuals should have constant variance (homoscedasticity). The residuals should be approximately
normally distributed. There should not be multicollinearity (independent variables should not be highly
correlated with each other).

To test linearity we plotted each of our variables against water quality score in a scatter plot. We
found none of the variables were linear with water quality score. Despite our best judgment we continue
to test our assumptions. We graphed an autocorrelation function (ACF) plot to test for independence.

Fig. 7 Autocorrelation function plot to test for independent variables.
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We plotted Figure 7 by plotting the residuals of our linear regression model as a barplot. We
learned that the data looks fairly independent. You can see most of the lags are zero. When lags are near
zero it means there is little to no correlation between the values of the time series at different lags. This
implies the time series are random and independent of past observations. We looked at a scatter plot of the
residuals and found they did not have a constant variance. See this below in Figure 8.
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Fig 8. Our fitted values plotted against the standardized residuals.
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We plotted Figure 8 by plotting the model’s fitted values against the standardized residuals of our
model. We would hope for this plot to be completely random. As you can see above there is a sharp edge
with lines inside of it. This means we have some kind of constant variance. We can also see from Figure 9
that our residuals are not normally distributed. To be confident in this observation we plotted the
cumulative distribution function (CDF) and empirical distribution function (ECDF) and a QQ-plot.

Fig. 9 CDF of Normal Distribution vs. ECDF and QQ-plot to test for normality.
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We plotted Figure 9 by plotting the standardized residuals in the QQ-plot and by comparing the
true normal distribution’s CDF and plotting it against the ECDF of our data. If the data were normal then
the scatterplot points in the QQ-plot would line up with the red line and the CDF and ECDF would look
the same. We confirmed that our data does not meet the assumption for normality. Before scratching the
idea for linear regression we decided to create a heatmap to test for multicollinearity.
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Heatmap of First Half Against Second Half
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We plotted Figure 10 by using seaborn’s heatmap method on our dataframe’s correlation. Our first
heatmap has a scale of what appears to be about -1 to 1. We can see in our heatmap of the first half
against itself that there is a noticeably positive correlation between median income and education value

percentages and true population and true population white. We also found a negative correlation between
the United States rank of education and education value percentages, the United states rank of income and
education value percentages, the United states rank of income and the United states rank of education, the
United states rank of income and median income. This makes sense since a rank of 1, would correspond
to highest statistics, so a region ranked as number one for income would have the highest median income.
In our second heatmap notice the change in scale from above 0.8 to a little below -0.2.We can see
in our heatmap of the first half against the second half there is a positive correlation between the total
population and total population of two or more races, the total population of white and total population of
two or more races, the total population of asian and total population of asian chinese, total population of
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white and total population of white and asian, total population and total population of non hispanic or
latino two or more races. We see a negative correlation between the United States rank of education and
total population of asian, Japanese, the United States rank of Education and the total population of white
and asian, the United States rank of income and asian, Japanese, and the United States rank of income the
total population of white and asian.

We learned in our heatmap of the second half against the second half there are many negative and
positive correlations, but the lower correlations do not have the same scale as the first heatmap. The range
appears to be around 0 to 1. There appears to be many with low correlation rather than high correlation.
Positive correlations found are total population of not hispanic or latino two or more races and total
population of not hispanic or latino two or more races excluding some other race and true population of
native Hawaiian and other pacific islander and the true population of native Hawaiian and other pacific
islander other pacific islander.

These heatmaps tell us there is some correlation between some of our variables. A few of the ones
we found have a very high correlation, which tells us there is multicollinearity of our data. This means we
fail this assumption. With this we can see we failed every assumption for linear regression. However, this
did not stop us from doing the linear regression. We decided to carry through and found the following
statistics:

Fig. 11 Linear Regression OLS results.
OLS Regression Results

R-squared: 0.182
Adj. R-Squared: 0.133
F-statistic: 3.698
Log-Likelihood: -33.18
AIC: 824.4
BIC: 1256

To interpret our results we will first explain what each value in the table means. R-squared
represents the coefficient of determination, which means it measures how well the regression prediction
approximates the real data points. An R-squared of 0 means the model does not explain any of the
variability of the response data around its mean, which means it fails to fit the data. R-squared represents
the model fitting the data perfectly and indicates the model explains all the variability of the response data
around the mean. Our R-squared is 0.182, which is close to zero, which means our model does not fit the
data well.

Adjusted R-squared (Adj. R-squared) penalizes R-squared values for including additional
predictors that do not improve the model’s performance sufficiently. A higher adjusted R-squared means
it is a better fit of the model for the data and a lower adjusted R-squared means the additional predictors
do not contribute significantly to explain the variability in the dependent variable. Our adjusted R-squared
is 0.133 which means we have predictors that do not improve the model’s performance and are not a good
fit for our data.
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An F-statistic tests the null hypothesis that all of the regression coefficients are equal to zero. It
evaluates if the independent variables collectively have a significant effect on the dependent variable. A
larger F-statistic indicates the model is more likely to be statistically significant than a model with no
independent variables. Our p-value of the F-statistic is less than our significance level of 0.05, meaning
that our model is statistically significant compared to the model with no independent variables.

Log likelihood measures how well the mode’s predicted probabilities match the observed
outcomes. Log likelihood sums the contributions of each observation to the overall likelihood. We want
to find parameter values that maximize the log likelihood. We would need to compare to other models to
say if -33.18 is a good or bad likelihood. The one that is higher would generally be considered a better fit
for the data.

Akaike Information Criterion (AIC) is used to compare the goodness of fit of statistical models. It
balances the model’s goodness of fit with its complexity, penalizing models that are too complex. A lower
AIC indicates a better balance between model fit and complexity. Our AIC is high at 824.4. However, we
cannot say if it is high or low for this model without creating different models and comparing our value
with the new AICs.

Bayesian Information Criterion (BIC) is used for model selection in statistics, particularly for
linear regression. It is another measure used to balance the goodness of fit with complexity. BIC penalizes
models more heavily for complexity than AIC. It prefers simpler models. A lower BIC indicates a better
balance between model fit and complexity. Our BIC is high at 1256. However, we cannot say if it is high
or low for this model without creating different models and comparing our value with the new BICs.

To select our variables we used mixed selection with the BIC criterion. Backward selection is
usually determined by education value percent, median income ($), U.S. rank education, U.S. rank
income, and some other race total populations were the best variables we should use. Note that the list of
variables changes as backward selection minimizes to a different set of variables each time. Forward
selection told us the usual total population of some races, U.S. rank education, and number of bachelor
degrees would be most helpful. Just like backward selection, these columns vary depending on which
minimum the selection process finds. This indicates that race, income, and education seem to play some
role with water quality.

That being said, we cannot trust these results because we failed every assumption for linear
regression. Using linear regression is not a good fit for our data. This was reiterated by our low
R-squared. We can see our AIC and BIC values are pretty large numbers in general, so it makes us also
think that we do not have a good balance of goodness of fit with complexity. We want to say that income,
education, and race affect water quality score, but more testing is needed.

2.3 ANOVA

ANOVA is used to determine if there is a statistically significant difference in means between
independent groups. We want to use this test to see if there is a statistically significant difference in means
between different levels of the same variable. The assumptions to perform ANOVA hypothesis testing is
normality, independence, and homogeneity of variances.

To test our assumption of normality we used the Kolmogorov Smirnov test. We found none of the
races came from normal distributions. This makes sense because the United States is a melting pot of
different ethnicities. We found the standardized data inside of the water quality score did not come from a
normal distribution either. This did not surprise us because of figure 4. We saw how the density plots did
not look normal and were instead right skewed. We found none of our education or income data was
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normal either. This makes sense because some places in California are known to be more wealthy than
others and we associate wealthier locations with high paying jobs that might require more education. We
were curious to see how close to normal the water quality score, income, and education columns were, so
we plotted QQ-plots.

Fig. 12 QQ-plots to test ANOVA normality.
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We decided in Figure 12 to plot the QQ-Plots of our standardized water quality score, income
columns, and education columns to visualize how close to normal the distributions are. We can see the
tails of all of the graphs come off of the reference line for a normal distribution. We can see the
standardized United States rank of education and income, the standardized education value percentage,
and the standardized median income all take on a little of an s-curve shape. Our standardized number of
bachelor’s degrees shoots up exponentially. The standardized water quality score looks the most similar to
the line, but flattens out occasionally.

Since our data as a whole does not come from a normal distribution, we were not surprised to find
that the groups do not come from normal distribution either. We first performed the Kolmogorov Smirnov
test to check the normality of each group for our ANOVA test. We are doing an ANOVA for each column
of interest (education statistics, income statistics, race statistics columns) so we performed the normality
test for each group per column of interest. What we found is that the majority of the groups do not come
from the normal distribution for any of the columns. This means that we do not meet the normality
assumption for ANOVA.

To test our assumption of independence we used the chi-square test of independence. We chose
this test because our observed data (water quality score) of focus is not time-series based, precluding the
use of the Autocorrelation Function. We separated the data into groups by quartile per column of interest
and then assessed the independence of the water quality levels between the groups using the chi-square
test.

Fig. 13 The chi-square test results showed the following for each risk level category:

Columns Is it independent?
Percentage of Total White Population No
Percentage of Total Population Black or No

African American

Percentage of Total Population American Yes
Indian and Alaska Native
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Percentage of Total Population Asian No
Percentage of Total Population Asian No
Filipino

Percentage of Total Population some other No

race

Percentage of Total Population two or more No
races

Percentage of Total Population two or more No
races white and american indian and Alaska
Native

Percentage of Total Population two or more Yes
races white and asian

Percentage of Total Population not hispanic Yes
or latino two or more races

Percentage of Total Population not hispanic No
or latino two or more races two races
excluding some other race

Education Value Percentage No
Num Bachelor’s Degrees No
U.S. Rank Education No
Median Income Dollars No
U.S. Rank Income No

Of our sixteen groups only three of them were found to be independent because they rejected the
null hypothesis, which means that the observed values of the specified groups are not independent. This
means we fail this assumption for ANOVA.

Taking into account that the data within each group is not normal, we chose to use Levene Test to
check for homogeneity of variances. The Levene test has two assumptions: the data comes from a random
sample, and the data of the samples is independent of each other. Unfortunately, we do not meet these
assumptions, so we proceed with caution. Under the null hypothesis Levene test states that the variances
of all the groups are the same. We meet the criteria of these assumptions. After performing the Levene
test we found that the majority of the time we reject the null hypothesis, and almost all of the groups seem
to have inconsistent variances between groups.

After we tested our assumptions we decided to bin our data from the minimum to the first
quartile, from the first quartile to the second quartile, from the second quartile to the third quartile, and
from the third quartile to the maximum value. From here we performed a one way ANOVA test on the
bins. Our null hypothesis for these tests say the means of each group is the same. This means if we reject
the null hypothesis the column the test was performed on impacts water quality. If we fail to reject the
null hypothesis then the column the test was performed on does not impact water quality. For our
ANOVA testing we chose a p-value of 0.05. We created a function in python that used scipy.stats’
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f oneway function to help us determine if we fail to reject the null hypothesis or reject the null
hypothesis. We performed ANOVA on all of our columns that fit within our designated bins.

Fig. 14 ANOVA test results for those with unique bins. Recall bins were minimum to first quartile, first
quartile to second quartile, second quartile to third quartile, and third quartile to maximum. The other
columns in our dataset did not have enough data and in the binning process were skipped.

Column: P-value: Conclusion:

Median Income ($) 0.00000001 Reject the Null Hypothesis
U.S. Rank of Income 0.00000001 Reject the Null Hypothesis
Number of Bachelor Degrees 0.00000012 Reject the Null Hypothesis
Education Value Percentage 0.00000001 Reject the Null Hypothesis
U.S. Rank of Education 0.00000867 Reject the Null Hypothesis
Percentage of Total White Population 0.00000008 Reject the Null Hypothesis
Percentage of Total Population Black or 0.00444551 Reject the Null Hypothesis
African American

Percentage of Total Population American 0.0445517 Reject the Null Hypothesis
Indian and Alaska Native

Percentage of Total Population Asian 0.04815210 Reject the Null Hypothesis
Percentage of Total Population Asian 0.00528847 Reject the Null Hypothesis
Filipino

Percentage of Total Population some other 0.00000008 Reject the Null Hypothesis
race

Percentage of Total Population two or more 0.00109753 Reject the Null Hypothesis
races

Percentage of Total Population two or more 0.00180463 Reject the Null Hypothesis
races white and american indian and Alaska

Native

Percentage of Total Population two or more 0.00088532 Reject the Null Hypothesis

races white and asian

Percentage of Total Population not hispanic 0.00000004 Reject the Null Hypothesis
or latino two or more races

Percentage of Total Population not hispanic 0.00000277 Reject the Null Hypothesis
or latino two or more races two races
excluding some other race

Every instance of rejecting the null hypothesis means the column affects water quality. We can
safely conclude that median income and education impact water quality. We discovered some races seem
to affect water quality as well. However, since we were unable to determine for all of our race columns
due to binning issues we decided to use percentages of the race within the county.
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We suspected that there may be interaction between race variables and education and income
variables when determining water quality. To test this theory we decided to run a Two-Way ANOVA
between education value percentage, Number of Bachelor Degrees, U.S. Rank of Education, Median
Income ($), U.S. Rank of Income, and every race column. Our results were as following: (a checkmark
indicates that we found statistically significant evidence for interaction, nothing indicates we didn’t find
statistically significant evidence for interaction)

Fig 15. Two-way ANOVA test results for those with unique bins. Vertical and horizontal index indicates
the combinations of independent variables whose interaction we were assessing. Checked values indicate
that the p-value was less than 0.05, while missing values indicate that p-value is greater than 0.05.

Education Number of U.S. Rank of Median Income U.S. Rank of
Value Bachelor Education ) Income
Percentage Degrees

% White Population /

% Black or African

American

% American Indian and
Alaska Native

v

% Asian

ANANIAN

% Asian Filipino

% Some Other Race

% Two+ races

AN

AN

% Two+ races white,
Native
American/Alaskan

AN

% Two+n races white
and asian

v

% not hispanic or latino
two+t races

v

AN AN ANERNAND NN N

Based on the table we can see that the U.S. Rank of Education tends to have the most interaction
with race columns. Additionally, Percentage of Total Population two or more races and Percentage of
Total Population some other race tend to have the most interaction with education and income
demographics columns. However, there is a consistent interaction pattern between race demographics and
the income and education demographics. Thus, it seems that race has its own impact on water quality
separate of the education or income data. However, we must take these results with a grain of salt, since
we did not meet any of the assumptions for ANOVA.
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2.4 Kruskal-Wallis Test

As an alternative to ANOVA, we decided to use Kruskal-Wallis Test, because it is a
non-parametric method, and makes minimal assumptions about the distribution, to test if the samples are
coming from the same distribution. The assumptions for Kruskal-Wallis Test are that the observations are
independent of each other, population is not necessarily normal and the variances are not necessarily
equal, and the observations must be drawn from the population through random sampling. All of these
assumptions except for independence are met in our case, so we chose to proceed with a lot of caution.

Under the null hypothesis Kruskal-Wallis Test states that the median of all groups are the same
indicating that the data of each group is coming from the same distribution. Our results showed that for
every column with enough data we reject the null hypothesis. This was true for the following columns:
Education Value Percentage, Number of Bachelor Degrees, U.S. Rank of Education, Median Income ($),
U.S. Rank of Income, Percentage of Total White Population, Percentage of Total Population Black or
African American, Percentage of Total Population American Indian and Alaska Native, Percentage of
Total Population Asian, Percentage of Total Population Asian Filipino, Percentage of Total Population
some other race, Percentage of Total Population two or more races, Percentage of Total Population two or
more races white and american indian and Alaska Native, Percentage of Total Population two or more
races white and asian, Percentage of Total Population not hispanic or latino two or more races, Percentage
of Total Population not hispanic or latino two or more races two races excluding some other race. This
means that at least one group within these columns has a statistically significantly different median at the
alpha level of 0.05. Thus, it is probable that all different groups from all columns mentioned above can act
as determining factors of water quality.

Interestingly, our Kruskal-Wallis Test and ANOVA came to the same conclusions. These
conclusions also contradict our EDA finding that there is a weak correlation between proportions of race
and water quality (Fig 6.). The results of our tests may not match the EDA findings because of the way
we binned the scores or because of the lack of independence. We may need to further investigate this
issue.

2.5 Logistic Regression

This section has been added after the rest of our models because we wanted to try one last model.
We found logistic regression did not work.

The assumptions to perform logistic regression are independence, linearity of independent
variables, no perfect multicollinearity, and homoscedasticity. We know that our data is not independent
because of Figure 13. After running the chi-square test of independence within each water quality risk
level group, categorized by quartiles, we found that the samples in each group were not independent. We
know that our data does not have perfect multicollinearity because of Figure 10. We have to test for
linearity of independent variables and homoscedasticity.
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Fig. 16 Pearson residual plot to test for linearity of independent variables and homoscedasticity.
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We plotted Figure 16 by calculating the Pearson residual, which is r. = F’ where y is our
p,(1-p)

actual value, p is our predicted probability value. We can see that our Pearson residual plot has a clear
pattern, which means that we fail the assumptions of linearity of independent variables and
homoscedasticity. Regardless of failing some of the assumptions needed for logistic regression we
continued.

Fig. 17 Multinomial Logistic Regression Results.
MLN Logistic Regression Results

Pseudo R-squared: 0.07283
Log-Likelihood: -1360.9
AIC: 2849.79
BIC: 3186.8

Unlike the traditional R-squared in linear regression, the pseudo R-squared is used when the
outcome variable is categorical. However, just like the R-squared coefficient scores, they are interpreted
in the same manner as in Figure 11 (it measures how well the regression prediction approximates the real
data points). The model’s pseudo R-squared coefficient is 0.07283 indicating that the model doesn’t
effectively fit the data well. The log-likelihood value is at -1360.9 highly suggests that the model has
much room for improvement in fitting the data’s underlying patterns. The scores for both AIC (Akaike
Information Criterion) and BIC (Bayesian Information Criterion), metrics that measure model fit while
also penalizing for complexity, are the following: 2849.79 and 3186.8. This means that the model has
much room for improvement in terms of complexity and effectively fitting the data.

When training the full logistic regression model, it was expected to get results that were as
lackluster as the OLS regression model. This was due to the fact that we did not employ any variable
selection processes to eliminate model complexity, hence the expectation for metrics worse than that of
the OLS regression model.
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RESULTS

Linear Regression: When looking at the linear regression, our data also failed the majority of
assumptions. Primarily, the homoscedasticity and linearity tests were the ones that deviated the most from
the desired result. Thus, we can not interpret the results with confidence. Backward and forward selection
also yielded extremely different covariate recommendations, which is indicative of non-linearity. The AIC
and BIC of our model is also quite large even after minimization techniques indicating that the model is a
poor fit. Our R-squared is very low which indicates that the model doesn’t explain the variability around
the mean well. Overall, we couldn’t really conclude much from the linear regression since the
assumptions were not met, and the statistics for the quality of our model were quite poor.

ANOVA: It is important to note that our data did not meet any assumptions for ANOVA, so we
take those results with a grain of salt. Our ANOVA found that all of the education, income, and race
demographics which had enough data were significant in determining water quality. We considered the
possibility that the reason race is significant in predicting water quality is because of its interaction with
other demographic variables in education and income. The two-way ANOVA proved this hypothesis
wrong, since there was no evident pattern in interaction between race and other demographic factors.
While some interaction existed, because we don’t meet the assumptions for ANOVA the randomness of
interactions could perhaps be attributed to that.

Kruskal-Wallis: To gain more statistically significant insights into the relationship between
demographics and water quality score, we decided to try a non-parametric test which would work despite
the fact that our data doesn’t meet normality nor variance homogeneity requirements. This is the
Kruskal-Wallis test. The conclusions from this test were the same as ANOVA. It found statistically
significant differences in medians between groups of each column. Meaning depending on the group the
median water quality changes, thus demonstrating that there is a relationship between water quality and
level of the column. Confirming ANOVA results, we can now be more sure that education, income, and
race demographics were statistically significant in determining water quality score.

Logistic Regression: Our data did not meet all the required assumptions when using the logistic
regression model to predict the water quality risk level. Furthermore, we failed four of four assumptions:
independence, linearity of independent variables, no perfect multicollinearity, and homoscedasticity. This
lack of confidence in our assumptions are met by the metrics that we found in the model summary. The
pseudo R-squared coefficient and the log-likelihood score are really low, indicating the model poorly fit
the data. In terms of gauging the model complexity and model fit together, the AIC and BIC scores are
extremely high. Overall, we can’t conclude that a multinomial logistic regression model would be an
accurate model to predict the water quality risk level. Note that logistic regression is in a separate jupyter
notebook because it was done after our initial models.

ETHICS

An important consideration we wanted to address were the ethics of our datasets. We recognize
that the data we are using and our results can affect people’s lives. Our datasets do not collect personal
information from specific individuals that could be traced back to them. All of our data was collected
from public data sources in an effort to avoid using data that could compromise an individual’s privacy.

Another aspect we would like to address is the biases we found within our datasets. Inside of our
datasets we found a geographical bias. We found that for some counties there was no data provided and
we discovered the possibility of more reported cases for certain counties and/or zipcodes. Therefore, we
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mapped out the distribution of reports inside of our exploratory data analysis. Furthermore we found
potential bias in how our data was composed. For our first dataset it contains self reported data, which can

introduce bias that comes with human interaction. More severe and noticeable water issues were more
likely to be reported than minor ones. The Census does a good job of collecting data (our second, fourth,
and fifth datasets use data from the Census), but may not capture the whole population because some

might not participate or be recorded properly. The census might not capture those “Hard-to-Reach
Populations” that might have poor water quality. Furthermore, those without stable housing are less likely
to participate in the survey. For our third dataset not all zip codes have a corresponding ZCTA, so we only
work with the data that has both.
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