
 Water quality and socioeconomic status in California 

 Anastasiya Markova 
 Halıcıoğlu Data Science Institute 

 University of California, San Diego 
 anmarkova@ucsd.edu 

 LinkedIn 
 GitHub 

 Zoe Ludena 
 Halıcıoğlu Data Science Institute 

 University of California, San Diego 
 zludena@ucsd.edu 

 LinkedIn 
 GitHub 

 Steven Luong 
 Halıcıoğlu Data Science Institute 

 University of California, San Diego 
 sxluong@ucsd.edu 

 LinkedIn 
 GitHub 

 ABSTRACT 

 This study investigates the relationship between socioeconomic factors, race, and water quality in 
 California, a state known for its water scarcity and droughts. Based on previous studies, there seems to be 
 conflicting conclusions regarding how influential socioeconomic status and race affects water quality. Our 
 investigation aims to clarify this relationship by analyzing the recent datasets encompassing water quality 
 metrics, income levels, county demographics, and education levels. We hypothesize water quality will be 
 affected by income levels, education levels. We are also curious to find out if there is a correlation 
 between water quality and race. 

 We utilized data from various sources, which included sources such as the Drinking Water - 
 SAFER Dashboard, ACS DEMOGRAPHIC AND HOUSING ESTIMATES - U.S. Census Bureau, 
 Income Table For California - U.S. Census Bureau, Education Table For California - U.S. Census Bureau, 
 and Zip to ZCTA - Github users. Through various statistical methods, including linear regression, logistic 
 regression, ANOVA and Kruskal-Wallis Test, we tested our hypothesis. 

 We found that columns attributed to education, income, and race can act as determining factors of 
 water quality. This means we have concluded that socioeconomic factors affect water quality, but we are 
 unsure of which groups affect water quality in a positive or negative way. 

 1. INTRODUCTION 

 1.1 Background Research 

 A sustainable and clean source of water is not only a necessity, but a fundamental human right for 
 all citizens. Water is vital in a health and environment sense, but becomes a matter of social justice when 
 there is not an equitable distribution of clean water for those of different socioeconomic status, ethnic 
 background, and geographical areas. 

 In the research article, "Socioeconomic factors and water quality in California,"  [1]  Y. H. Farzin 
 and Kelly Grogan explored the key factors affecting California's water quality. They worked with data 
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 from 1993-2006 that includes water quality and socioeconomic data. They used three classes of models, 
 the Environmental Kuznets Curve (EKC), a more inclusive model containing socioeconomic variables, 
 and a model that included socioeconomic variables and spatial correlation. Note EKC states that as 
 income increases then environmental quality declines, but after a certain per capita income level, quality 
 begins to and continues to improve as income increases. They investigated whether purely economic 
 factors affect water quality or California agriculture, race, and education. They found the per capita 
 income was not a significant factor in explaining variability in water quality, but agriculture and industrial 
 activities did. 

 In the research article, "Disparities in drinking water quality evidence,"  [2]  Sarah Acquah and 
 Maura Allaire address disparities between water qualities based on income and race. Their goal was to 
 create more empirical evidence for California's government in an effort to improve the drinking water 
 quality for those in disadvantaged communities. They worked with data from 2000 to 2018 that included 
 Community Water Systems (CWSs) in California, EPA's Safe Drinking Water Information Systems, and 
 the United States census. They used Probit regression models to examine the likelihood of violations as a 
 function of the demographics of the CWS service area. They found low-income communities and 
 minority groups (like hispanics) are more likely to face health-related water quality violations. 

 Our study aims to clear up these contradicting findings by finding if income, education, and race 
 affect water quality in different parts of California. The tests we chose to use do not tell us if specific 
 income levels, education levels, or races affect the water quality in a positive or negative way, but we 
 encourage others to explore our research to find out. 

 1.2 Hypothesis 

 In this paper we want to see if socioeconomic factors affect water quality in California. In 
 research articles we found, like the ones provided above, we found contradicting results. These 
 differences probably come from the differences in models and data. We noticed the times looked at also 
 differed between the two research papers. We want to conduct hypothesis tests to illuminate the 
 connections between socioeconomic factors, demographic attributes, and water quality today. We hope by 
 analyzing datasets detailing water quality metrics across California, demographic insights from the U.S. 
 Census and mapping resources can uncover statistically significant correlations between economic status, 
 racial demographics, education levels, and various parameters of water quality. We hypothesize water 
 quality will be affected by income levels and education levels. We are also curious to discover if there is a 
 correlation between water quality and race. 

 1.3 Our data 

 Our first dataset is called Drinking Water - SAFER Dashboard Failing and At-Risk Drinking 
 Water Systems.  [3]  The number of observations inside of this dataset is 3232 and the number of variables is 
 138. This dataset contains information on the water system, the location, and water information (E-coli, 
 accessibility, violations, concerns, drought, groundwater, median household income, socioeconomic 
 burden, and deficiencies). Our second dataset is called DP05|ACS DEMOGRAPHIC AND HOUSING 
 ESTIMATES.  [4]  The number of observations inside of  this dataset is 33120 and the number of variables is 
 138. This dataset contains information on sex, age, and race with total populations, margin of error, and 
 estimates. Our third dataset is called zip_to_zcta.  [5]  The number of observations inside of this dataset is 
 41131 and the number of variables is 3. This dataset contains a mapping from zip codes to ZCTAs. Our 
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 fourth dataset is called California Income Table.  [6]  The number of observations inside of this dataset is 60 
 and the number of variables is 4. This dataset contains county, the Federal Information Processing 
 Standards (FIPS), percentages, number of people with at least a Bachelor's Degree, and rank within the 
 United States. Our fifth dataset is called California Education Table.  [7]  The number of observations inside 
 of this dataset is 60 and the number of variables is 5. This dataset contains county, the Federal 
 Information Processing Standards (FIPS), median household income in US dollars, and rank within the 
 United States. 

 2. MATERIALS AND METHODS 

 2.1 Exploratory Data Analysis 

 To better understand our data we performed exploratory data analysis on different aspects of our dataset. 
 We focused on the number of water systems, median income per county, education level per county, water 
 quality scores, and groups of races. 

 Fig. 1 The number of water systems per county in California. 

 Pictured in Figure 1 is a choropleth map that illustrates the number of water systems per county inside of 
 California. Inside of Tableau we were able to use the geographical location of the county then grouped the 
 distinct number of water systems. From Figure 1 we found that some counties have many more water 
 systems than others. This caused us to become more cautious when making assumptions about a single 
 county based on the number of water systems. 

https://hdpulse.nimhd.nih.gov/data-portal/social/table?socialtopic=030&socialtopic_options=social_6&demo=00011&demo_options=income_3&race=00&race_options=race_7&sex=0&sex_options=sexboth_1&age=001&age_options=ageall_1&statefips=06&statefips_options=area_states
https://hdpulse.nimhd.nih.gov/data-portal/social/table?socialtopic=020&socialtopic_options=social_6&demo=00006&demo_options=education_3&race=00&race_options=race_7&sex=0&sex_options=sex_3&age=081&age_options=age25_1&statefips=06&statefips_options=area_states
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 Fig. 2 The median income in dollars per county in California. 

 Pictured in Figure 2 is a choropleth map that illustrates the median income in dollars per county inside of 
 California. Inside of Tableau we were able to use the geographical location of the county then display the 
 median income in dollars. We made two separate maps to better display the data. We learned there is a 
 large variety of incomes inside of California. 

 Fig. 3 The number of people with a minimum of bachelor’s degrees per county in California. 

 Pictured in Figure 3 is a choropleth map that illustrates the number of people with a minimum of a 
 bachelor’s degree per county inside of California. Inside of Tableau we were able to use the geographical 
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 location of the county then display the number of people. We made three separate maps to better display 
 the data. We omitted Los Angeles County which had an outlier of 2,356,572 people with a minimum of a 
 bachelor’s degree. We learned there is a wide range of people with at least a bachelor's degree. It appears 
 there are more counties with 100,000 people with bachelor’s degrees or lower. 

 Fig 4. Density plots for water quality scores low, medium, and high. 

 Pictured in Figure 4 are three density plots. The risk level is determined by the unweighted water quality 
 category score. There is one for low risk levels, which is 0.01 to 0.44, medium risk levels, which is 0.45 
 to 0.59, and high risk levels, which is 0.6 or above. The density plot shows us the overall shape of the 
 distribution of water quality scores at different risk levels. We can see the shape for low risk levels and 
 high risk levels are skewed to the right. We see the shape for medium risk levels appears almost normal, 
 but has another, smaller peak around 0.58. This tells us that if there is a low or high risk level it is more 
 likely to be on the lower side of its range. For medium risk level it is more likely to be in the middle of its 
 range. 



 Markova, Luong, Ludena p.  6 

 Fig 5. The average water quality score by county. 

 Pictured in Figure 5, this choropleth map illustrates the average water quality score in each county 
 starting from the lowest echelon of 0.13 to 0.72. Inside Tableau we were able to use the geographical 
 location of the county then display then the average water quality score. The southern counties of 
 california seem to have much better water quality on average than that of the counties of central/northern 
 California. 

 Fig 6. Scatter plots of race group proportions and their associated water quality scores. 

 X-axis Respective to the Scatterplots: Asian, American Indian and Alaska Native, Not Hispanic or Latino 
 Group, Native Hawaiian and Other Pacific Islander, and Two or more Races. 

 Pictured in Figure 6, are scatterplots that showcase the correlations between the proportion of 
 race groups within a county and the water quality score of that county. From these visuals generated by 
 Tableau, it is very hard to make out an obvious trend. After calculating Pearson's correlation score for all 
 groupings, we got the following: 0.1, -0.03, -0.18, -0.01, and 0.02. These correlation scores, all nearing 
 the neutral score of 0, all indicate a very weak relationship between the race groups and the water quality. 
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 2.2 Linear Regression 

 We wanted to use linear regression with forward selection, which iteratively adds the predictors 
 that improve the model based on Bayesian Information Criterion (BIC) and backward selection, which 
 iteratively removes the predictors that contribute least to the model according to BIC. We performing 
 linear regression on all of our variables, county (for geographical location), education value percent, the 
 number of people who at least have a bachelor's degree in the county, and the United States rank for the 
 education for the county (for education), median income dollars and the United States rank for the income 
 for the county (for income), and total populations for different races per county (for races) to predict 
 water quality scores. 

 To perform linear regression the relationship between our independent variables and our 
 dependent variables should be linear. The observations should be independent from each other. The 
 residuals should have constant variance (homoscedasticity). The residuals should be approximately 
 normally distributed. There should not be multicollinearity (independent variables should not be highly 
 correlated with each other). 

 To test linearity we plotted each of our variables against water quality score in a scatter plot. We 
 found none of the variables were linear with water quality score. Despite our best judgment we continue 
 to test our assumptions. We graphed an autocorrelation function (ACF) plot to test for independence. 

 Fig. 7 Autocorrelation function plot to test for independent variables. 

 We plotted Figure 7 by plotting the residuals of our linear regression model as a barplot. We 
 learned that the data looks fairly independent. You can see most of the lags are zero. When lags are near 
 zero it means there is little to no correlation between the values of the time series at different lags. This 
 implies the time series are random and independent of past observations. We looked at a scatter plot of the 
 residuals and found they did not have a constant variance. See this below in Figure 8. 
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 Fig 8. Our fitted values plotted against the standardized residuals. 

 We plotted Figure 8 by plotting the model’s fitted values against the standardized residuals of our 
 model. We would hope for this plot to be completely random. As you can see above there is a sharp edge 
 with lines inside of it. This means we have some kind of constant variance. We can also see from Figure 9 
 that our residuals are not normally distributed. To be confident in this observation we plotted the 
 cumulative distribution function (CDF) and empirical distribution function (ECDF) and a QQ-plot. 

 Fig. 9 CDF of Normal Distribution vs. ECDF and QQ-plot to test for normality. 

 We plotted Figure 9 by plotting the standardized residuals in the QQ-plot and by comparing the 
 true normal distribution’s CDF and plotting it against the ECDF of our data. If the data were normal then 
 the scatterplot points in the QQ-plot would line up with the red line and the CDF and ECDF would look 
 the same. We confirmed that our data does not meet the assumption for normality. Before scratching the 
 idea for linear regression we decided to create a heatmap to test for multicollinearity. 
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 Fig. 10 Heatmaps of columns to test for 
 multicollinearity. We split up the columns in half 
 to display all of them. Some abbreviations were 
 applied to the figure. TP stands for total 
 population, AIAN stands for American Indian and 
 Alaska Native, NHOPI stands for Native 
 Hawaiian and other Pacific islander, 2 stands for 
 two or more races. 

 We plotted Figure 10 by using seaborn’s heatmap method on our dataframe’s correlation. Our first 
 heatmap has a scale of what appears to be about -1 to 1. We can see in our heatmap of the first half 
 against itself that there is a noticeably positive correlation between median income and education value 
 percentages and true population and true population white. We also found a negative correlation between 
 the United States rank of education and education value percentages, the United states rank of income and 
 education value percentages, the United states rank of income and the United states rank of education, the 
 United states rank of income and median income. This makes sense since a rank of 1, would correspond 
 to highest statistics, so a region ranked as number one for income would have the highest median income. 

 In our second heatmap notice the change in scale from above 0.8 to a little below -0.2.We can see 
 in our heatmap of the first half against the second half there is a positive correlation between the total 
 population and total population of two or more races, the total population of white and total population of 
 two or more races, the total population of asian and total population of asian chinese, total population of 
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 white and total population of white and asian, total population and total population of non hispanic or 
 latino two or more races. We see a negative correlation between the United States rank of education and 
 total population of asian, Japanese, the United States rank of Education and the total population of white 
 and asian, the United States rank of income and asian, Japanese, and the United States rank of income the 
 total population of white and asian. 

 We learned in our heatmap of the second half against the second half there are many negative and 
 positive correlations, but the lower correlations do not have the same scale as the first heatmap. The range 
 appears to be around 0 to 1. There appears to be many with low correlation rather than high correlation. 
 Positive correlations found are total population of not hispanic or latino two or more races and total 
 population of not hispanic or latino two or more races excluding some other race and true population of 
 native Hawaiian and other pacific islander and the true population of native Hawaiian and other pacific 
 islander other pacific islander. 

 These heatmaps tell us there is some correlation between some of our variables. A few of the ones 
 we found have a very high correlation, which tells us there is multicollinearity of our data. This means we 
 fail this assumption. With this we can see we failed every assumption for linear regression. However, this 
 did not stop us from doing the linear regression. We decided to carry through and found the following 
 statistics: 

 Fig. 11 Linear Regression OLS results. 
 OLS Regression Results 

 R-squared:  0.182 

 Adj. R-Squared:  0.133 

 F-statistic:  3.698 

 Log-Likelihood:  -33.18 

 AIC:  824.4 

 BIC:  1256 

 To interpret our results we will first explain what each value in the table means. R-squared 
 represents the coefficient of determination, which means it measures how well the regression prediction 
 approximates the real data points. An R-squared of 0 means the model does not explain any of the 
 variability of the response data around its mean, which means it fails to fit the data. R-squared represents 
 the model fitting the data perfectly and indicates the model explains all the variability of the response data 
 around the mean. Our R-squared is 0.182, which is close to zero, which means our model does not fit the 
 data well. 

 Adjusted R-squared (Adj. R-squared) penalizes R-squared values for including additional 
 predictors that do not improve the model’s performance sufficiently. A higher adjusted R-squared means 
 it is a better fit of the model for the data and a lower adjusted R-squared means the additional predictors 
 do not contribute significantly to explain the variability in the dependent variable. Our adjusted R-squared 
 is 0.133 which means we have predictors that do not improve the model’s performance and are not a good 
 fit for our data. 
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 An F-statistic tests the null hypothesis that all of the regression coefficients are equal to zero. It 
 evaluates if the independent variables collectively have a significant effect on the dependent variable. A 
 larger F-statistic indicates the model is more likely to be statistically significant than a model with no 
 independent variables. Our p-value of the F-statistic is less than our significance level of 0.05, meaning 
 that our model is statistically significant compared to the model with no independent variables. 

 Log likelihood measures how well the mode’s predicted probabilities match the observed 
 outcomes.  Log likelihood sums the contributions of each observation to the overall likelihood. We want 
 to find parameter values that maximize the log likelihood. We would need to compare to other models to 
 say if -33.18 is a good or bad likelihood. The one that is higher would generally be considered a better fit 
 for the data. 

 Akaike Information Criterion (AIC) is used to compare the goodness of fit of statistical models. It 
 balances the model’s goodness of fit with its complexity, penalizing models that are too complex. A lower 
 AIC indicates a better balance between model fit and complexity. Our AIC is high at 824.4. However, we 
 cannot say if it is high or low for this model without creating different models and comparing our value 
 with the new AICs. 

 Bayesian Information Criterion (BIC) is used for model selection in statistics, particularly for 
 linear regression. It is another measure used to balance the goodness of fit with complexity. BIC penalizes 
 models more heavily for complexity than AIC. It prefers simpler models. A lower BIC indicates a better 
 balance between model fit and complexity. Our BIC is high at 1256. However, we cannot say if it is high 
 or low for this model without creating different models and comparing our value with the new BICs. 

 To select our variables we used mixed selection with the BIC criterion. Backward selection is 
 usually determined by education value percent, median income ($), U.S. rank education, U.S. rank 
 income, and some other race total populations were the best variables we should use. Note that the list of 
 variables changes as backward selection minimizes to a different set of variables each time. Forward 
 selection told us the usual total population of some races, U.S. rank education, and number of bachelor 
 degrees would be most helpful. Just like backward selection, these columns vary depending on which 
 minimum the selection process finds. This indicates that race, income, and education seem to play some 
 role with water quality. 

 That being said, we cannot trust these results because we failed every assumption for linear 
 regression. Using linear regression is not a good fit for our data. This was reiterated by our low 
 R-squared. We can see our AIC and BIC values are pretty large numbers in general, so it makes us also 
 think that we do not have a good balance of goodness of fit with complexity. We want to say that income, 
 education, and race affect water quality score, but more testing is needed. 

 2.3 ANOVA 

 ANOVA is used to determine if there is a statistically significant difference in means between 
 independent groups. We want to use this test to see if there is a statistically significant difference in means 
 between different levels of the same variable. The assumptions to perform ANOVA hypothesis testing is 
 normality, independence, and homogeneity of variances. 

 To test our assumption of normality we used the Kolmogorov Smirnov test. We found none of the 
 races came from normal distributions. This makes sense because the United States is a melting pot of 
 different ethnicities. We found the standardized data inside of the water quality score did not come from a 
 normal distribution either. This did not surprise us because of figure 4. We saw how the density plots did 
 not look normal and were instead right skewed. We found none of our education or income data was 
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 normal either. This makes sense because some places in California are known to be more wealthy than 
 others and we associate wealthier locations with high paying jobs that might require more education. We 
 were curious to see how close to normal the water quality score, income, and education columns were, so 
 we plotted QQ-plots. 

 Fig. 12 QQ-plots to test ANOVA normality. 
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 We decided in Figure 12 to plot the QQ-Plots of our standardized water quality score, income 
 columns, and education columns to visualize how close to normal the distributions are. We can see the 
 tails of all of the graphs come off of the reference line for a normal distribution. We can see the 
 standardized United States rank of education and income, the standardized education value percentage, 
 and the standardized median income all take on a little of an s-curve shape. Our standardized number of 
 bachelor’s degrees shoots up exponentially. The standardized water quality score looks the most similar to 
 the line, but flattens out occasionally. 

 Since our data as a whole does not come from a normal distribution, we were not surprised to find 
 that the groups do not come from normal distribution either. We first performed the Kolmogorov Smirnov 
 test to check the normality of each group for our ANOVA test. We are doing an ANOVA for each column 
 of interest (education statistics, income statistics, race statistics columns) so we performed the normality 
 test for each group per column of interest. What we found is that the majority of the groups do not come 
 from the normal distribution for any of the columns. This means that we do not meet the normality 
 assumption for ANOVA. 

 To test our assumption of independence we used the chi-square test of independence. We chose 
 this test because our observed data (water quality score) of focus is not time-series based, precluding the 
 use of the Autocorrelation Function. We separated the data into groups by quartile per column of interest 
 and then assessed the independence of the water quality levels between the groups using the chi-square 
 test. 

 Fig. 13 The chi-square test results showed the following for each risk level category: 

 Columns  Is it independent? 

 Percentage of Total White Population  No 

 Percentage of Total Population Black or 
 African American 

 No 

 Percentage of Total Population American 
 Indian and Alaska Native 

 Yes 
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 Percentage of Total Population Asian  No 

 Percentage of Total Population Asian 
 Filipino 

 No 

 Percentage of Total Population some other 
 race 

 No 

 Percentage of Total Population two or more 
 races 

 No 

 Percentage of Total Population two or more 
 races white and american indian and Alaska 
 Native 

 No 

 Percentage of Total Population two or more 
 races white and asian 

 Yes 

 Percentage of Total Population not hispanic 
 or latino two or more races 

 Yes 

 Percentage of Total Population not hispanic 
 or latino two or more races two races 
 excluding some other race 

 No 

 Education Value Percentage  No 

 Num Bachelor’s Degrees  No 

 U.S. Rank Education  No 

 Median Income Dollars  No 

 U.S. Rank Income  No 

 Of our sixteen groups only three of them were found to be independent because they rejected the 
 null hypothesis, which means that the observed values of the specified groups are not independent. This 
 means we fail this assumption for ANOVA. 

 Taking into account that the data within each group is not normal, we chose to use Levene Test to 
 check for homogeneity of variances. The Levene test has two assumptions: the data comes from a random 
 sample, and the data of the samples is independent of each other. Unfortunately, we do not meet these 
 assumptions, so we proceed with caution. Under the null hypothesis Levene test states that the variances 
 of all the groups are the same. We meet the criteria of these assumptions. After performing the Levene 
 test we found that the majority of the time we reject the null hypothesis, and almost all of the groups seem 
 to have inconsistent variances between groups. 

 After we tested our assumptions we decided to bin our data from the minimum to the first 
 quartile, from the first quartile to the second quartile, from the second quartile to the third quartile, and 
 from the third quartile to the maximum value. From here we performed a one way ANOVA test on the 
 bins. Our null hypothesis for these tests say the means of each group is the same. This means if we reject 
 the null hypothesis the column the test was performed on impacts water quality. If we fail to reject the 
 null hypothesis then the column the test was performed on does not impact water quality. For our 
 ANOVA testing we chose a p-value of 0.05. We created a function in python that used scipy.stats’ 
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 f_oneway function to help us determine if we fail to reject the null hypothesis or reject the null 
 hypothesis. We performed ANOVA on all of our columns that fit within our designated bins. 

 Fig. 14 ANOVA test results for those with unique bins. Recall bins were minimum to first quartile, first 
 quartile to second quartile, second quartile to third quartile, and third quartile to maximum. The other 

 columns in our dataset did not have enough data and in the binning process were skipped. 

 Column:  P-value:  Conclusion: 

 Median Income ($)  0.00000001  Reject the Null Hypothesis 

 U.S. Rank of Income  0.00000001  Reject the Null Hypothesis 

 Number of Bachelor Degrees  0.00000012  Reject the Null Hypothesis 

 Education Value Percentage  0.00000001  Reject the Null Hypothesis 

 U.S. Rank of Education  0.00000867  Reject the Null Hypothesis 

 Percentage of Total White Population  0.00000008  Reject the Null Hypothesis 

 Percentage of Total Population Black or 
 African American 

 0.00444551  Reject the Null Hypothesis 

 Percentage of Total Population American 
 Indian and Alaska Native 

 0.0445517  Reject the Null Hypothesis 

 Percentage of Total Population Asian  0.04815210  Reject the Null Hypothesis 

 Percentage of Total Population Asian 
 Filipino 

 0.00528847  Reject the Null Hypothesis 

 Percentage of Total Population some other 
 race 

 0.00000008  Reject the Null Hypothesis 

 Percentage of Total Population two or more 
 races 

 0.00109753  Reject the Null Hypothesis 

 Percentage of Total Population two or more 
 races white and american indian and Alaska 
 Native 

 0.00180463  Reject the Null Hypothesis 

 Percentage of Total Population two or more 
 races white and asian 

 0.00088532  Reject the Null Hypothesis 

 Percentage of Total Population not hispanic 
 or latino two or more races 

 0.00000004  Reject the Null Hypothesis 

 Percentage of Total Population not hispanic 
 or latino two or more races two races 
 excluding some other race 

 0.00000277  Reject the Null Hypothesis 

 Every instance of rejecting the null hypothesis means the column affects water quality. We can 
 safely conclude that median income and education impact water quality. We discovered some races seem 
 to affect water quality as well. However, since we were unable to determine for all of our race columns 
 due to binning issues we decided to use percentages of the race within the county. 
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 We suspected that there may be interaction between race variables and education and income 
 variables when determining water quality. To test this theory we decided to run a Two-Way ANOVA 
 between education value percentage, Number of Bachelor Degrees, U.S. Rank of Education, Median 
 Income ($), U.S. Rank of Income, and every race column. Our results were as following: (a checkmark 
 indicates that we found statistically significant evidence for interaction, nothing indicates we didn’t find 
 statistically significant evidence for interaction) 

 Fig 15. Two-way ANOVA test results for those with unique bins. Vertical and horizontal index indicates 
 the combinations of independent variables whose interaction we were assessing. Checked values indicate 

 that the p-value was less than 0.05, while missing values indicate that p-value is greater than 0.05. 

 Education 
 Value 
 Percentage 

 Number of 
 Bachelor 
 Degrees 

 U.S. Rank of 
 Education 

 Median Income 
 ($) 

 U.S. Rank of 
 Income 

 % White Population 

 % Black or African 
 American 

 % American Indian and 
 Alaska Native 

 % Asian 

 % Asian Filipino 

 % Some Other Race 

 % Two+ races 

 % Two+ races white, 
 Native 
 American/Alaskan 

 % Two+n races white 
 and asian 

 % not hispanic or latino 
 two+ races 

 Based on the table we can see that the U.S. Rank of Education tends to have the most interaction 
 with race columns. Additionally, Percentage of Total Population two or more races and Percentage of 
 Total Population some other race tend to have the most interaction with education and income 
 demographics columns. However, there is a consistent interaction pattern between race demographics and 
 the income and education demographics. Thus, it seems that race has its own impact on water quality 
 separate of the education or income data. However, we must take these results with a grain of salt, since 
 we did not meet any of the assumptions for ANOVA. 
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 2.4 Kruskal-Wallis Test 

 As an alternative to ANOVA, we decided to use Kruskal-Wallis Test, because it is a 
 non-parametric method, and makes minimal assumptions about the distribution, to test if the samples are 
 coming from the same distribution. The assumptions for Kruskal-Wallis Test are that the observations are 
 independent of each other, population is not necessarily normal and the variances are not necessarily 
 equal, and the observations must be drawn from the population through random sampling. All of these 
 assumptions except for independence are met in our case, so we chose to proceed with a lot of caution. 

 Under the null hypothesis Kruskal-Wallis Test states that the median of all groups are the same 
 indicating that the data of each group is coming from the same distribution. Our results showed that for 
 every column with enough data we reject the null hypothesis. This was true for the following columns: 
 Education Value Percentage, Number of Bachelor Degrees, U.S. Rank of Education, Median Income ($), 
 U.S. Rank of Income, Percentage of Total White Population, Percentage of Total Population Black or 
 African American, Percentage of Total Population American Indian and Alaska Native, Percentage of 
 Total Population Asian, Percentage of Total Population Asian Filipino, Percentage of Total Population 
 some other race, Percentage of Total Population two or more races, Percentage of Total Population two or 
 more races white and american indian and Alaska Native, Percentage of Total Population two or more 
 races white and asian, Percentage of Total Population not hispanic or latino two or more races, Percentage 
 of Total Population not hispanic or latino two or more races two races excluding some other race. This 
 means that at least one group within these columns has a statistically significantly different median at the 
 alpha level of 0.05. Thus, it is probable that all different groups from all columns mentioned above can act 
 as determining factors of water quality. 

 Interestingly, our Kruskal-Wallis Test and ANOVA came to the same conclusions. These 
 conclusions also contradict our EDA finding that there is a weak correlation between proportions of race 
 and water quality (Fig 6.). The results of our tests may not match the EDA findings because of the way 
 we binned the scores or because of the lack of independence. We may need to further investigate this 
 issue. 

 2.5 Logistic Regression 

 This section has been added after the rest of our models because we wanted to try one last model. 
 We found logistic regression did not work. 

 The assumptions to perform logistic regression are independence, linearity of independent 
 variables, no perfect multicollinearity, and homoscedasticity. We know that our data is not independent 
 because of Figure 13. After running the chi-square test of independence within each water quality risk 
 level group, categorized by quartiles, we found that the samples in each group were not independent. We 
 know that our data does not have perfect multicollinearity because of Figure 10. We have to test for 
 linearity of independent variables and homoscedasticity. 
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 Fig. 16 Pearson residual plot to test for linearity of independent variables and homoscedasticity. 

 We plotted Figure 16 by calculating the Pearson residual, which is  , where  is our  𝑟 
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 actual value,  is our predicted probability value. We can see that our Pearson residual plot has a clear  𝑝 
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 pattern, which means that we fail the assumptions of linearity of independent variables and 
 homoscedasticity. Regardless of failing some of the assumptions needed for logistic regression we 
 continued. 

 Fig. 17 Multinomial Logistic Regression Results. 
 MLN Logistic Regression Results 

 Pseudo R-squared:  0.07283 

 Log-Likelihood:  -1360.9 

 AIC:  2849.79 

 BIC:  3186.8 

 Unlike the traditional R-squared in linear regression, the pseudo R-squared is used when the 
 outcome variable is categorical. However, just like the R-squared coefficient scores, they are interpreted 
 in the same manner as in Figure 11 (it measures how well the regression prediction approximates the real 
 data points). The model’s pseudo R-squared coefficient is 0.07283 indicating that the model doesn’t 
 effectively fit the data well. The log-likelihood value is at -1360.9 highly suggests that the model has 
 much room for improvement in fitting the data’s underlying patterns. The scores for both AIC (Akaike 
 Information Criterion) and BIC (Bayesian Information Criterion), metrics that measure model fit while 
 also penalizing for complexity, are the following: 2849.79 and 3186.8. This means that the model has 
 much room for improvement in terms of complexity and effectively fitting the data. 

 When training the full logistic regression model, it was expected to get results that were as 
 lackluster as the OLS regression model. This was due to the fact that we did not employ any variable 
 selection processes to eliminate model complexity, hence the expectation for metrics worse than that of 
 the OLS regression model. 
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 RESULTS 

 Linear Regression: When looking at the linear regression, our data also failed the majority of 
 assumptions. Primarily, the homoscedasticity and linearity tests were the ones that deviated the most from 
 the desired result. Thus, we can not interpret the results with confidence. Backward and forward selection 
 also yielded extremely different covariate recommendations, which is indicative of non-linearity. The AIC 
 and BIC of our model is also quite large even after minimization techniques indicating that the model is a 
 poor fit. Our R-squared is very low which indicates that the model doesn’t explain the variability around 
 the mean well. Overall, we couldn’t really conclude much from the linear regression since the 
 assumptions were not met, and the statistics for the quality of our model were quite poor. 

 ANOVA: It is important to note that our data did not meet any assumptions for ANOVA, so we 
 take those results with a grain of salt. Our ANOVA found that all of the education, income, and race 
 demographics which had enough data were significant in determining water quality. We considered the 
 possibility that the reason race is significant in predicting water quality is because of its interaction with 
 other demographic variables in education and income. The two-way ANOVA proved this hypothesis 
 wrong, since there was no evident pattern in interaction between race and other demographic factors. 
 While some interaction existed, because we don’t meet the assumptions for ANOVA the randomness of 
 interactions could perhaps be attributed to that. 

 Kruskal-Wallis: To gain more statistically significant insights into the relationship between 
 demographics and water quality score, we decided to try a non-parametric test which would work despite 
 the fact that our data doesn’t meet normality nor variance homogeneity requirements. This is the 
 Kruskal-Wallis test. The conclusions from this test were the same as ANOVA. It found statistically 
 significant differences in medians between groups of each column. Meaning depending on the group the 
 median water quality changes, thus demonstrating that there is a relationship between water quality and 
 level of the column. Confirming ANOVA results, we can now be more sure that education, income, and 
 race demographics were statistically significant in determining water quality score. 

 Logistic Regression: Our data did not meet all the required assumptions when using the logistic 
 regression model to predict the water quality risk level. Furthermore, we failed four of four assumptions: 
 independence, linearity of independent variables, no perfect multicollinearity, and homoscedasticity. This 
 lack of confidence in our assumptions are met by the metrics that we found in the model summary. The 
 pseudo R-squared coefficient and the log-likelihood score are really low, indicating the model poorly fit 
 the data. In terms of gauging the model complexity and model fit together, the AIC and BIC scores are 
 extremely high. Overall, we can’t conclude that a multinomial logistic regression model would be an 
 accurate model to predict the water quality risk level. Note that logistic regression is in a separate jupyter 
 notebook because it was done after our initial models. 

 ETHICS 

 An important consideration we wanted to address were the ethics of our datasets. We recognize 
 that the data we are using and our results can affect people’s lives. Our datasets do not collect personal 
 information from specific individuals that could be traced back to them. All of our data was collected 
 from public data sources in an effort to avoid using data that could compromise an individual’s privacy. 

 Another aspect we would like to address is the biases we found within our datasets. Inside of our 
 datasets we found a geographical bias. We found that for some counties there was no data provided and 
 we discovered the possibility of more reported cases for certain counties and/or zipcodes. Therefore, we 
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 mapped out the distribution of reports inside of our exploratory data analysis. Furthermore we found 
 potential bias in how our data was composed. For our first dataset it contains self reported data, which can 
 introduce bias that comes with human interaction. More severe and noticeable water issues were more 
 likely to be reported than minor ones. The Census does a good job of collecting data (our second, fourth, 
 and fifth datasets use data from the Census), but may not capture the whole population because some 
 might not participate or be recorded properly. The census might not capture those “Hard-to-Reach 
 Populations” that might have poor water quality. Furthermore, those without stable housing are less likely 
 to participate in the survey. For our third dataset not all zip codes have a corresponding ZCTA, so we only 
 work with the data that has both. 
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